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Preface

This note is a short introduction to Binary Decision Diagrams. It provides some back-

ground knowledge and describes the core algorithms. More details can be found in

Bryant's original paper on Reduced Ordered Binary Decision Diagrams [Bry86] and the

survey paper [Bry92]. A recent extension called Boolean Expression Diagrams is described

in [AH97].

This note is a revision of an earlier version from fall 1996 (based on versions from

1995 and 1994). The major di�erences are as follows: Firstly, ROBDDs are now viewed

as nodes of one global graph with one �xed ordering to reect state-of-the-art of e�cient

BDD packages. The algorithms have been changed (and simpli�ed) to reect this fact.

Secondly, a proof of the canonicity lemma has been added. Thirdly, the sections presenting

the algorithms have been completely restructured. Finally, the project proposal has been

revised.
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1 Boolean Expressions

The classical calculus for dealing with truth values consists of Boolean variables x; y; :::,

the constants true 1 and false 0, the operators of conjunction ^, disjunction _, negation

:, implication ), and bi-implication , which together form the Boolean expressions.

Sometimes the variables are called propositional variables or propositional letters and the

Boolean expressions are then known as Propositional Logic.

Formally, Boolean expressions are generated from the following grammar:

t ::= x j 0 j 1 j :t j t ^ t j t _ t j t) t j t, t;

where x ranges over a set of Boolean variables. This is called the abstract syntax of Boolean

expressions. The concrete syntax includes parentheses to solve ambiguities. Moreover, as

a common convention it is assumed that the operators bind according to their relative

priority. The priorities are, with the highest �rst: :, ^, _, ,, ). Hence, for example

:x1 ^ x2 _ x3 ) x4 = (((:x1) ^ x2) _ x3)) x4 :

A Boolean expression with variables x1; : : : ; xn denotes for each assignment of truth values

to the variables itself a truth value according to the standard truth tables, see �gure 1.

Truth assignments are written as sequences of assignments of values to variables, e.g.,

[0=x1; 1=x2; 0=x3; 1=x4] which assigns 0 to x1 and x3, 1 to x2 and x4. With this particular

truth assignment the above expression has value 1, whereas [0=x1; 1=x2; 0=x3; 0=x4] yields
0.

:

0 1

1 0

^ 0 1

0 0 0

1 0 1

_ 0 1

0 0 1

1 1 1

) 0 1

0 1 1

1 0 1

, 0 1

0 1 0

1 0 1

Figure 1: Truth tables.

The set of truth values is often denoted B = f0; 1g. If we �x an ordering of the

variables of a Boolean expression t we can view t as de�ning a function from B
n to B

where n is the number of variables. Notice, that the particular ordering chosen for the

variables is essential for what function is de�ned. Consider for example the expression

x) y. If we choose the ordering x < y then this is the function f(x; y) = x) y, true if

the �rst argument implies the second, but if we choose the ordering y < x then it is the

function f(y; x) = x ) y, true if the second argument implies the �rst. When we later

consider compact representations of Boolean expressions, such variable orderings play a

crucial role.

Two Boolean expressions t and t0 are said to be equal if they yield the same truth

value for all truth assignments. A Boolean expression is a tautology if it yields true for

all truth assignments; it is satis�able if it yields true for at least one truth assignment.

Exercise 1.1 Show how all operators can be encoded using only : and _. Use this

to argue that any Boolean expression can be written using only _, ^, variables, and :

applied to variables.
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Exercise 1.2 Argue that t and t0 are equal if and only if t , t0 is a tautology. Is it

possible to say whether t is satis�able from the fact that :t is a tautology?

2 Normal Forms

A Boolean expression is in Disjunctive Normal Form (DNF) if it consists of a disjunction

of conjunctions of variables and negations of variables, i.e., if it is of the form

(t11 ^ t
1
2 ^ � � � ^ t

1
k1
) _ � � � _ (tl1 ^ t

l
2 ^ � � � ^ t

l
kl
) (1)

where each tji is either a variable x
j
i or a negation of a variable :xji . An example is

(x ^ :y) _ (:x ^ y)

which is a well-known function of x and y (which one?). A more succinct presentation of

(1) is to write it using indexed versions of ^ and _:

l_
j=1

0
@

kj^
i=1

tji

1
A :

Similarly, a Conjunctive Normal Form (CNF) is an expression that can be written as

l̂

j=1

0
@

kj_
i=1

tji

1
A

where each tji is either a variable or a negated variable. It is not di�cult to prove the

following proposition:

Proposition 1 Any Boolean expression is equal to an expression in CNF and an expres-

sion in DNF.

In general, it is hard to determine whether a Boolean expression is satis�able. This is

made precise by a famous theorem due to Cook [Coo71]:

Theorem 1 (Cook) Satis�ability of Boolean expressions is NP-complete.

(For readers unfamiliar with the notion of NP-completeness the following short summary

of the pragmatic consequences su�ces. Problems that are NP-complete can be solved

by algorithms that run in exponential time. No polynomial time algorithms are known

to exist for any of the NP-complete problems and it is very unlikely that polynomial

time algorithms should indeed exist although nobody has yet been able to prove their

non-existence.)

Cook's theorem even holds when restricted to expressions in CNF. For DNFs satis�-

ability is decidable in polynomial time but for DNFs the tautology check is hard (co-NP

complete). Although satis�ability is easy for DNFs and tautology check easy for CNFs,
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this does not help us since the conversion between CNFs and DNFs is exponential as the

following example shows.

Consider the following CNF over the variables x10; : : : x
n
0 ; x

1
1; : : : ; x

n
1 :

(x10 _ x
1
1) ^ (x

2
0 _ x

2
1) ^ � � � ^ (x

n
0 _ x

n
1 ) :

The corresponding DNF is a disjunction which has a disjunct for each of the n-digit binary

numbers from 000 : : : 000 to 111 : : : 111 | the i'th digit representing a choice of either xi0
(for 0) or xi1 (for 1):

(x10 ^ x
2
0 ^ � � � ^ x

n�1
0 ^ xn0 ) _

(x10 ^ x
2
0 ^ � � � ^ x

n�1
0 ^ xn1 ) _

...

(x11 ^ x
2
1 ^ � � � ^ x

n�1
1 ^ xn0 ) _

(x11 ^ x
2
1 ^ � � � ^ x

n�1
1 ^ xn1 ) :

Whereas the original expression has size proportional to n the DNF has size proportional

to n2n.

The next section introduces a normal form that has more desirable properties than

DNFs and CNFs. In particular, there are e�cient algorithms for determining the satis�-

ability and tautology questions.

Exercise 2.1 Describe a polynomial time algorithm for determining whether a DNF is

satis�able.

Exercise 2.2 Describe a polynomial time algorithm for determining whether a CNF is

a tautology.

Exercise 2.3 Give a proof of proposition 1.

Exercise 2.4 Explain how Cook's theorem implies that checking in-equivalence between

Boolean expressions is NP-hard.

Exercise 2.5 Explain how the question of tautology and satis�ability can be decided if

we are given an algorithm for checking equivalence between Boolean expressions.

3 Binary Decision Diagrams

Let x! y0; y1 be the if-then-else operator de�ned by

x! y0; y1 = (x ^ y0) _ (:x ^ y1)

hence, t ! t0; t1 is true if t and t0 are true or if t is false and t1 is true. We call t the

test expression. All operators can easily be expressed using only the if-then-else operator

and the constants 0 and 1. Moreover, this can be done in such a way that all tests are

performed only on (un-negated) variables and variables occur in no other places. Hence

the operator gives rise to a new kind of normal form. For example, :x is (x ! 0; 1) ,
x, y is x! (y ! 1; 0); (y ! 0; 1). Since variables must only occur in tests the Boolean

expression x is represented as x! 1; 0 .
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An If-then-else Normal Form (INF) is a Boolean expression built entirely

from the if-then-else operator and the constants 0 and 1 such that all tests are

performed only on variables.

If we by t[0=x] denote the Boolean expression obtained by replacing x with 0 in t then

it is not hard to see that the following equivalence holds:

t = x! t[1=x]; t[0=x] : (2)

This is known as the Shannon expansion of t with respect to x. This simple equation has

a lot of useful applications. The �rst is to generate an INF from any expression t. If t

contains no variables it is either equivalent to 0 or 1 which is an INF. Otherwise we form

the Shannon expansion of t with respect to one of the variables x in t. Thus since t[0=x]

and t[1=x] both contain one less variable than t, we can recursively �nd INFs for both of

these; call them t0 and t1. An INF for t is now simply

x! t1; t0:

We have proved:

Proposition 2 Any Boolean expression is equivalent to an expression in INF.

Example 1 Consider the Boolean expression t = (x1 , y1) ^ (x2 , y2). If we �nd an

INF of t by selecting in order the variables x1; y1; x2; y2 on which to perform Shannon

expansions, we get the expressions

t = x1 ! t1; t0

t0 = y1 ! 0; t00

t1 = y1 ! t11; 0

t00 = x2 ! t001; t000

t11 = x2 ! t111; t110

t000 = y2 ! 0; 1

t001 = y2 ! 1; 0

t110 = y2 ! 0; 1

t111 = y2 ! 1; 0

Figure 2 shows the expression as a tree. Such a tree is also called a decision tree. �

A lot of the expressions are easily seen to be identical, so it is tempting to identify them.

For example, instead of t110 we can use t000 and instead of t111 we can use t001. If we

substitute t000 for t110 in the right-hand side of t11 and also t001 for t111, we in fact see

that t00 and t11 are identical, and in t1 we can replace t11 with t00.

If we in fact identify all equal subexpressions we end up with what is known as a

binary decision diagram (a BDD). It is no longer a tree of Boolean expressions but a

directed acyclic graph (DAG).
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x1

1 0 0 1 0

y1

x2

y2 y2

0 11 00

y1

x2

y2 y2

Figure 2: A decision tree for (x1 , y1) ^ (x2 , y2). Dashed lines denote low-branches,

solid lines high-branches.

Applying this idea of sharing, t can now be written as:

t = x1 ! t1; t0

t0 = y1 ! 0; t00

t1 = y1 ! t00; 0

t00 = x2 ! t001; t000

t000 = y2 ! 0; 1

t001 = y2 ! 1; 0

Each subexpression can be viewed as the node of a graph. Such a node is either terminal

in the case of the constants 0 and 1, or non-terminal. A non-terminal node has a low-edge

corresponding to the else-part and a high-edge corresponding to the then-part. See �gure

3. Notice, that the number of nodes has decreased from 9 in the decision tree to 6 in

the BDD. It is not hard to imagine that if each of the terminal nodes were other big

decision trees the savings would be dramatic. Since we have chosen to consistently select

variables in the same order in the recursive calls during the construction of the INF of t,

the variables occur in the same orderings on all paths from the root of the BDD. In this

situation the binary decision diagram is said to be ordered (an OBDD). Figure 3 shows a

BDD that is also an OBDD.

Figure 4 shows four OBDDs. Some of the tests (e.g., on x2 in b) are redundant,

since both the low- and high-branch lead to the same node. Such unnecessary tests can

be removed: any reference to the redundant node is simply replaced by a reference to
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y2 y2

y1 y1

x2

x1

0 1

Figure 3: A BDD for (x1 , y1) ^ (x2 , y2) with ordering x1 < y1 < x2 < y2. Low-edges

are drawn as dotted lines and high-edges as solid lines.

1

1

0 1

1

x1

x1

x2

x3

x1

x2

dcba

Figure 4: Four OBDDs: a) An OBDD for 1. b) Another OBDD for 1 with two redundant

tests. c) Same as b with one of the redundant tests removed. d) An OBDD for x1 _ x3
with one redundant test.
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x

y z

x < y

x < z
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To make this claimmore precise we must say what we mean for an ROBDD to represent

a function. First, it is quite easy to see how the nodes u of an ROBDD inductively de�nes

Boolean expressions tu: A terminal node is a Boolean constant. A non-terminal node

marked with x is an if-then-else expression where the condition is x and the two branches

are the Boolean expressions given by the low- or high-son, respectively:

t0 = 0

t1 = 1

tu = var(u)! thigh(u); tlow(u); if u is a variable node.

Moreover, if x1 < x2 < � � � < xn is the variable ordering of the ROBDD, we associate

with each node u the function fu that maps (b1; b2; : : : ; bn) 2 B
n to the truth value of

tu[b1=x1; b2=x2; : : : ; bn=xn]. We can now state the key lemma:

Lemma 1 (Canonicity lemma)

For any function f : B n
! B there is exactly one ROBDD u with variable ordering x1 <

x2 < � � � < xn such that fu = f(x1; : : : ; xn).

Proof: The proof is by induction on the number of arguments of f . For n = 0 there

are only two Boolean functions, the constantly false and constantly true functions. Any

ROBDD containing at least one non-terminal node is non-constant. (Why?) Therefore

there is exactly one ROBDD for each of these: the terminals 0 and 1.

Assume now that we have proven the lemma for all functions of n arguments. We

proceed to show it for all functions of n+1 arguments. Let f : B n+1
! B be any Boolean

function of n+1 arguments. De�ne the two functions f0 and f1 of n arguments by �xing

the �rst argument of f to 0 respectively 1:

fb(x2; : : : ; xn+1) = f(b; x2; : : : ; xn+1) for b 2 B .

(Sometimes f0 and f1 are called the negative and positive co-factors of f with respect to

x1.) These functions satisfy the following equation:

f(x1; : : : ; xn) = x1 ! f1(x2; : : : ; xn); f0(x2; : : : ; xn) : (3)

Since f0 and f1 take only n arguments we assume by induction that there are unique

ROBDD nodes u0 and u1 with fu0 = f0 and fu1 = f1.

There are two cases to consider. If u0 = u1 then fu0 = fu1 and f0 = fu0 = fu1 = f1 =
f . Hence u0 = u1 is an ROBDD for f . It is also the only ROBDD for f since due to

the ordering, if x1 is at all present in the ROBDD rooted at u, x1 would need to be the

root node. However, if f = fu then f0 = fu[0=x1] = f low(u) and f1 = fu[1=x1] = f high(u).

Since f0 = fu0 = fu1 = f1 by assumption, the low- and high-son of u would be the same,

making the ROBDD violate the reducedness condition of non-redundant tests.

If u0 6= u1 then fu0 6= fu1 by the induction hypothesis (using the names x2; : : : ; xn+1
in place of x1; : : : ; xn). We take u to be the node with var(u) = x1, low(u) = u0, and
high(u) = u1, i.e., f

u = x1 ! fu1 ; fu0 which is reduced. By assumption fu1 = f1
and fu0 = f0 therefore using (3) we get fu = f . Suppose that v is some other node

with f v = f . Clearly, f v must depend on x1, i.e., f
v[0=x1] 6= f v[1=x1] (otherwise also
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f0 = f v[0=x1] = f v[1=x1] = f1, a contradiction). Due to the ordering this means that

var(v) = x1 = var(u). Moreover, from f v = f it follows that f low(v) = f0 = fu0 and

f high(v) = f1 = fu1, which by the induction hypothesis implies that low(v) = u0 = low(u)

and high(v) = u1 = high(u). From the reducedness property of uniqueness it follows that

u = v. �

An immediate consequence is the following. Since the terminal 1 is an ROBDD for all

variable orderings it is the only ROBDD that is constantly true. So in order to check

whether an ROBDD is constantly true it su�ces to check whether it is the terminal 1

which is de�nitely a constant time operation. Similarly, ROBDDs that are constantly

false must be identical to the terminal 0. In fact, to determine whether two Boolean

functions are the same, it su�ces to construct their ROBDDs (in the same graph) and

check whether the resulting nodes are the same!

The ordering of variables chosen when constructing an ROBDD has a great impact on

the size of the ROBDD. If we consider again the expression (x1 , y1) ^ (x2 , y2) and

construct an ROBDD using the ordering x1 < x2 < y1 < y2 the ROBDD consists of 9

nodes (�gure 6) and not 6 nodes as for the ordering x1 < y1 < x2 < y2 (�gure 3).

01

y2 y2

y1 y1 y1 y1

x2x2

x1

Figure 6: The ROBDD for (x1 , y1)^(x2 , y2) with variable ordering x1 < x2 < y1 < y2.

Exercise 3.1 Show how to express all operators from the if-then-else operator and the

constants 0 and 1.

Exercise 3.2 Draw the ROBDDs for (x1 , y1) ^ (x2 , y2) ^ (x3 , y3) with orderings

x1 < x2 < x3 < y1 < y2 < y3 and x1 < y1 < x2 < y2 < x3 < y3.
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Exercise 3.3 Draw the ROBDDs for (x1 , y1) _ (x2 , y2) with orderings x1 < x2 <

y1 < y2 and x1 < y1 < x2 < y2. How does it compare with the example in �gures 3 and 6?

Based on the examples you have seen so far, what variable ordering would you recommend

for constructing a small ROBDD for (x1 , y1)^ (x2 , y2)^ (x3 , y3)^ � � �^ (xk , yk)?

Exercise 3.4 Give an example of a sequence of ROBDDs un; 0 � n which induces expo-

nentially bigger decision trees. I.e., if un has size �(n) then the decision tree should have

size �(2n).

Exercise 3.5 Construct an ROBDD of maximum size over six variables.

4 Constructing and Manipulating ROBDDs

In the previous section we saw how to construct an OBDD from a Boolean expression

by a simple recursive procedure. The question arises now how do we construct a reduced

OBDD? One way is to �rst construct an OBDD and then proceed by reducing it. An-

other more appealing approach, which we follow here, is to reduce the OBDD during

construction.

To describe how this is done we will need an explicit representation of ROBDDs. Nodes

will be represented as numbers 0; 1; 2; : : : with 0 and 1 reserved for the terminal nodes. The

variables in the ordering x1 < x2 < � � � < xn are represented by their indices 1; 2; : : : ; n.
The ROBDD is stored in a table T : u 7! (i; l; h) which maps a node u to its three

attributes var(u) = i, low(u) = l, and high(u) = h. Figure 7 shows the representation of

the ROBDD from �gure 3 (with the variable names changed to x1 < x2 < x3 < x4).

4.1 Mk

In order to ensure that the OBDD being constructed is reduced, it is necessary to deter-

mine from a triple (i; l; h) whether there exists a node u with var(u) = i; low(u) = l, and
high(u) = h. For this purpose we assume the presence of a table H : (i; l; h) 7! u mapping

triples (i; l; h) of variable indices i, and nodes l; h to nodes u. The table H is the \inverse"

of the table T , i.e., for variable nodes u, T (u) = (i; l; h), if and only if, H(i; l; h) = u. The

operations needed on the two tables are:

T : u 7! (i; l; h)

init(T ) initialize T to contain only 0 and 1

u add(T; i; l; h) allocate a new node u with attributes (i; l; h)

var(u); low(u); high(u) lookup the attributes of u in T

H : (i; l; h) 7! u

init(H) initialize H to be empty

b member(H; i; l; h) check if (i; l; h) is in H

u lookup(H; i; l; h) �nd H(i; l; h)

insert(H; i; l; h; u) make (i; l; h) map to u in H
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2 3

4

5 6

7

x4 x4

x2

x3

x1

0 1

x2

T : u 7! (i; l; h)

u var
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Build[T;H](t)
1: function build'(t; i) =

2: if i > n then

3: if t is false then return 0 else return 1

4: else v0  build'(t[0=xi]; i+ 1)

5: v1  build'(t[1=xi]; i+ 1)

6: return mk(i; v0; v1)
7: end build'

8:

9: return build'(t; 1)

Figure 9: Algorithm for building an ROBDD from a Boolean expression t

using the ordering x1 < x2 < � � � < xn. In a call build'(t; i), i is the lowest
index that any variable of t can have. Thus when the test i > n succeeds, t

contains no variables and must be either constantly false or true.

We shall assume that all these operations can be performed in constant time, O(1). Section
5 will show how such a low complexity can be achieved.

The function mk[T;H](i; l; h) (see �gure 8) searches the table H for a node with

variable index i and low-, high-branches l; h and returns a matching node if one exists.

Otherwise it creates a new node u, inserts it into H and returns the identity of it. The

running time of mk is O(1) due to the assumptions on the basic operations on T and H.

The OBDD is ensured to be reduced if nodes are only created through the use of mk. In

describing mk and subsequent algorithms, we make use of the notation [T;H] to indicate

that mk depends on the global data structures T and H, but we leave out the arguments

when invoking it as part of other algorithms.

4.2 Build

The construction of an ROBDD from a given Boolean expression t proceeds as in the

construction of an if-then-else normal form (INF) in section 2. An ordering of the variables

x1 < � � � < xn is �xed. Using the Shannon expansion t = x1 ! t[1=x1]; t[0=x1], a node for t
is constructed by a call to mk, after the nodes for t[0=x1] and t[1=x1] have been constructed

by recursion. The algorithm is shown in �gure 9. The call build'(t; i) constructs an

ROBDD for a Boolean expression t with variables in fxi; xi+1; : : : ; xng. It does so by �rst

recursively constructing ROBDDs v0 and v1 for t[0=xi] and t[1=xi] in lines 4 and 5, and

then proceeding to �nd the identity of the node for t in line 6. Notice that if v0 and v1 are

identical, or if there already is a node with the same i, v0 and v1, no new node is created.

An example of using build to compute an ROBDD is shown in �gure 10. The running

time of build is bad. It is easy to see that for a variable ordering with n variables there

will always be generated on the order of 2n calls .
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((0 , x2) _ x3; 2)

build'((x1 , x2) _ x3; 1)

((1, x2) _ x3; 2)

((1 , 1) _ x3; 3)((1 , 0) _ x3; 3)

((1 , 0) _ 0; 4) ((1 , 1) _ 0; 4)

((1 , 0) _ 1; 4) ((1 , 1) _ 1; 4)

((0 , 1) _ x3; 3)

((0 , 1) _ 0; 4)

((0 , 0) _ x3; 3)

((0 , 0) _ 1; 4)

((0 , 0) _ 0; 4)

((0, 1) _ 1; 4)

b c

d

e

f
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Figure 10: Using build on the expression (x1 , x2)_ x3. (a) The tree of calls to build.

(b) The ROBDD after the call build'((0, 0)_x3; 3). (c) After the call build'((0, 1)_

x3; 3). (d) After the call build'((0, x2)_x3; 2). (e) After the calls build'((1, 0)_x3; 3)

and build'((1 , 1) _ x3; 3). (f) After the call build'((1 , x2) _ x3; 2). (g) The �nal

result.
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4.3 Apply

Apply[T;H](op; u1; u2)

1: init(G)

2:

3: function app(u1; u2) =

4: if G(u1; u2) 6= empty then return G(u1; u2)

5: else if u1 2 f0; 1g and u2 2 f0; 1g then u op(u1; u2)

6: else if var(u1) = var(u2) then

7: u mk(var(u1);app(low(u1); low(u2));app(high(u1); high(u2)))

8 else if var(u1) < var(u2) then

9 u mk(var(u1);app(low(u1); u2);app(high(u1); u2))

10: else (� var(u1) > var(u2) �)

11: u mk(var(u2);app(u1; low(u2));app(u1; high(u2)))

12: G(u1; u2) u

13: return u

14: end app

15:

16: return app(u1; u2)

Figure 11: The algorithm apply[T;H](op; u1; u2).

All the binary Boolean operators on ROBDDs are implemented by the same general

algorithm apply(op; u1; u2) that for two ROBDDs computes the ROBDD for the Boolean

expression tu1 op tu2. The construction of apply is based on the Shannon expansion (2):

t = x! t[1=x]; t[0=x] :

Observe that for all Boolean operators op the following holds:

(x! t1; t2) op (x! t01; t
0
2) = x! t1 op t

0
1; t2 op t

0
2 (4)

If we start from the root of the two ROBDDs we can construct the ROBDD of the result by

recursively constructing the low- and the high-branches and then form the new root from

these. Again, to ensure that the result is reduced, we create the node through a call to

mk. Moreover, to avoid an exponential blow-up of recursive calls, dynamic programming

is used. The algorithm is shown in �gure 11.

Dynamic programming is implemented using a table of results G. Each entry (i; j) is

either empty or contains the earlier computed result of app(i; j). The algorithm distin-

guishes between four di�erent cases, the �rst of them handles the situation where both

arguments are terminal nodes, the remaining three handle the situations where at least

one argument is a variable node.

If both u1 and u2 are terminal, a new terminal node is computed having the value of

op applied to the two truth values. (Recall, that terminal node 0 is represented by a node

with identity 0 and similarly for 1.)
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If at least one of u1 and u2 are non-terminal, we proceed according to the variable

index. If the nodes have the same index, the two low-branches are paired and app

recursively computed on them. Similarly for the high-branches. This corresponds exactly

to the case shown in equation (4). If they have di�erent indices, we proceed by pairing the

node with lowest index with the low- and high-branches of the other. This corresponds

to the equation

(xi ! t1; t2) op t = xi ! t1 op t; t2 op t (5)

which holds for all t. Since we have taken the index of the terminals to be one larger

than the index of the non-terminals, the last two cases, var(u1) < var(u2) and var(u1) >

var(u2), take account of the situations where one of the nodes is a terminal.

Figure 12 shows an example of applying the algorithm on two small ROBDDs. Notice

how pairs of nodes from the two ROBDDs are combined and computed.

To analyze the complexity of
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Figure 12: An example of applying the algorithm apply for computing the conjunction

of the two ROBDDs shown at the top left. The result is shown to the right. Below the

tree of arguments to the recursive calls of app. Dashed nodes indicate that the value of

the node has previously been computed and is not recomputed due to the use of dynamic

programming. The solid ellipses show calls that �nishes by a call to mk with the variable

index indicated by the variables to the right of the tree.
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Restrict[T;H](u; j; b) =
1: function res(u) =

2: if var(u) > j then return u

3: else if var(u) < j then return mk(var(u); res(low(u)); res(high(u)))

4: else (* var(u) = j *) if b = 0 then return res(low(u))

5: else (* var(u) = j; b = 1 *) return res(high(u))

6: end res

7: return res(u)

Figure 13: The algorithm restrict[T;H](u; j; b) which computes an ROBDD

for tu[j=b].

4.5 SatCount, AnySat, AllSat

In this section we consider operations to examine the set of satisfying truth assignments

of a node u. A truth assignment � satis�es a node u if tu[�] can be evaluated to 1 using

the truth tables of the Boolean operators. Formally, the satisfying truth assignments is

the set sat(u):
sat(u) = f� 2 B

fx1;:::;xng
j tu[�] is true g;

where B
fx1;:::;xng denotes the set of all truth assignments for variables fx1; : : : ; xng, i.e.,

functions from fx1; : : : ; xng to the truth values B = f0; 1g. The �rst algorithm, Sat-

Count, computes the size of sat(u), see �gure 14. The algorithm exploits the follow-

ing fact. If u is a node with variable index var(u) then two sets of truth assignments

can make fu true. The �rst set has varu equal to 0, the other has varu equal to

1. For the �rst set, the number is found by �nding the number of truth assignments

count(low(u)) making low(u) true. All variables between var(u) and var(low(u)) in

the ordering can be chosen arbitrarily, therefore in the case of varu being 0, a total

of 2var(low(u))�var (u)�1
� count(low(u)) satisfying truth assignments exists. To be e�cient,

dynamic programming should be applied in SatCount (see exercise 4.10).

The next algorithm AnySat in �gure 15 �nds a satisfying truth assignment. Some

irrelevant variables present in the ordering might not appear in the result and they can

be assigned any value whatsoever. AnySat simply �nds a path leading to 1 by a depth-

�rst traversal, prefering somewhat arbitrarily low-edges over high-edges. It is particularly

simple due to the observation that if a node is not the terminal 0, it has at least one path

leading to 1. The running time is clearly linear in the result.

AllSat in �gure 16 �nds all satisfying truth-assignments leaving out irrelevant vari-

ables from the ordering. AllSat(u) �nds all paths from a node u to the terminal 1. The

running time is linear in the size of the result multiplied with the time to add the single

assignments [xvar(u) 7! 0] and [xvar(u) 7! 1] in front of a list of up to n elements. However,

the result can be exponentially large in juj, so the running time is the poor O(2jujn).
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SatCount[T ](u)

1: function count(u)

2: if u = 0 then res 0

3: else if u = 1 then res 1

4: else res 2var(low(u))�var (u)�1
� count(low(u))

+ 2var(high(u))�var(u)�1
� count(high(u))

5: return res

6: end count

7:

8: return 2var(u)�1 � count(u)

Figure 14: An algorithm for determining the number of valid truth assign-

ments. Recall, that the \variable index" var of 0 and 1 in the ROBDD repre-

sentation is n+1 when the ordering contains n variables (numbered 1 through

n). This means that var(0) and var(1) always gives n+ 1.

AnySat(u)

1: if u = 0 then Error

2: else if u = 1 then return []

3: else if low(u) = 0 then return [xvar(u) 7! 1;AnySat(high(u))]

4: else return [xvar(u) 7! 0;AnySat(low(u))]

Figure 15: An algorithm for returning a satisfying truth-assignment. The

variables are assumed to be x1; : : : ; xn ordered in this way.

AllSat(u)
1: if u = 0 then return h i

2: else if u = 1 then return h [ ] i

3: else return

4: hadd [xvar(u) 7! 0] in front of all

5: truth-assignments in AllSat(low(u));

6: add [xvar(u) 7! 1] in front of all

7: truth-assignments in AllSat(high(u))i

Figure 16: An algorithm which returns all satisfying truth-assignments. The

variables are assumed to be x1; : : : xn ordered in this way. We use h� � �i to

denote sequences of truth assignments. In particular, h i is the empty sequence

of truth assignments, and h [ ] i is the sequence consisting of the single empty

truth assignment.
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Simplify(d; u)
1: function sim(d; u)

2: if d = 0 then return 0

3: else if u � 1 then return u

4: else if d = 1 then

5: return mk(var(u); sim(d; low(u)); sim(d; high(u)))
6: else if var(d) = var(u) then

7: if low(d) = 0 then return sim(high(d); high(u))

8: else if high(d) = 0 then return sim(low(d); low(u))
9: else return mk(var(u);

10: sim(low(d); low(u));

11: sim(high(d); high(u)))

12: else if var(d) < var(u) then
13: return mk(var(d); sim(low(d); u); sim(high(d); u))
14: else

15: return mk(var(u); sim(d; low(u)); sim(d; high(u)))
16: end sim

17:

18: return sim(d; u)

Figure 17: An algorithm (due to Coudert et al [CBM89] ) for simplifying an

ROBDD b that we only care about on the domain d. Dynamic programming

should be applied to improve e�ciency (exercise 4.12)
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mk(i; u0; u1) O(1)

Build(t) O(2n)

Apply(op; u1; u2) O(ju1j ju2j)
Restrict(u; j; b) O(juj) See note

SatCount(u) O(juj) See note

AnySat(u) O(jpj) p = AnySat(u), jpj = O(juj)

AllSat(u) O(jrj � n) r = AllSat(u), jrj = O(2juj)
Simplify(d; u) O(jdjjuj) See note
Note: These running times only holds if dynamic programming is

used (exercises 4.7, 4.10, and 4.12).

Table 1: Worst-case running times for the ROBDD operations. The running times are the

expected running times since they are all based on a hash-table with expected constant

time search and insertion operations.

4.6 Simplify

The �nal algorithm called Simplify is shown in �gure 17. The algorithm is used to

simplify an ROBDD by trying to remove nodes. The simpli�cation is based on a domain

d of interest. The ROBDD u is supposed to be of interest only on truth assignments

that also satisfy d. (This occurs when using ROBDDs for formal veri�cation. Section

7 shows how to do formal veri�cation with ROBDDs, but contains no example of using

Simplify.)

To be precise, given d and u, Simplify �nds another ROBDD u0, typically smaller

than u, such that td ^ tu = td ^ tu
0

. It does so by trying to identify sons, and thereby

making some nodes redundant. A more detailed analysis is left to the reader.

The running time of the algorithms of the previous sections is summarized in table 1.

4.7 Existential Quanti�cation and Substitution

When applying ROBDDs often existential quanti�cation and composition is used. Ex-

istential quanti�cation is the Boolean operation 9x:t. The meaning of an existential

quanti�cation of a Boolean variable is given by the following equation:

9x:t = t[0=x] _ t[1=x] : (6)

On ROBDDs existential quanti�cation can therefore be implemented using two calls to

Restrict and a single call to Apply.

Composition is the ROBDD operation performing the equivalent of substitution on

Boolean expression. Often the notation t[t0=x] is used to describe the result of substituting

all free occurrences of x in t by t0. (An occurrence of a variable is free if it is not within

the scope of a quanti�er.)1 To perform this substitution on ROBDDs we observe the

1Since ROBDDs contain no quanti�ers we shall not be concerned with the problems of free variables

of t0 being bound by quanti�ers of t.
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following equation, which holds if t contains no quanti�ers:

t[t0=x] = t[t0 ! 1; 0=x] = t0 ! t[1=x]; t[0=x]: (7)

Since (t0 ! t[1=x]; t[0=x]) = (t0 ^ t[1=x])_ (:t0 ^ t[0=x]) we can compute this with two

applications of restrict and three applications of apply (with the operators ^, (: )^ ,

_). However, by essentially generalizing apply to operators op with three arguments we

can do better (see exercise 4.13).

Exercises

Exercise 4.1 Construct the ROBDD for :x1 ^ (x2 , :x3) with ordering x1 < x2 < x3
using the algorithm Build in �gure 9.

Exercise 4.2 Show the representation of the ROBDD of �gure 6 in the style of �gure 7.

Exercise 4.3 Suggest an improvement BuildConj(t) of Build which generates only a

linear number of calls for Boolean expressions t that are conjunctions of variables and

negations of variables.

Exercise 4.4 Construct the ROBDDs for x and x ) y using whatever ordering you

want. Compute the disjunction of the two ROBDDs using apply.

Exercise 4.5 Construct the ROBDDs for :(x1 ^ x3) and x2 ^ x3 using build with the

ordering x1 < x2 < x3. Use apply to �nd the ROBDD for :(x1 ^ x3) _ (x2 ^ x3).

Exercise 4.6 Is there any essential di�erence in running time between �nding restrict(b; 1; 0)
and restrict(b; n; 0) when the variable ordering is x1 < x2 < � � � < xn?

Exercise 4.7 Use dynamic programming to improve the running time of Restrict.

Exercise 4.8 Generalise restrict to arbitrary truth assignments [xi1 = bi1 ,xi2 = bi2 ,: : :,xin =

bin ]. It might be convenient to assume that xi1 < xi2 < � � � < xin .

Exercise 4.9 Suggest a substantially better way of building ROBDDs for (large) Boolean

expressions than build.

Exercise 4.10 Change SatCount such that dynamic programming is used. How does

this change the running time?

Exercise 4.11 Explain why dynamic programming does not help in improving the run-

ning time of AllSat.

Exercise 4.12 Improve the e�ciency of Simplify with dynamic programming.

Exercise 4.13 Write the algorithm Compose(u1; x; u2) for computing the ROBDD of

u1[u2=x] e�ciently along the lines of apply. First generalize apply to operators op

with three arguments (as for example the if-then-else operator), utilizing once again the

Shannon expansion. Then use equation 7 to write the algorithm.
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5 Implementing the ROBDD operations

There are many choices that have to be taken in implementing the ROBDD operations.

There is no obvious best way of doing it. This section gives hints for some reasonable

solutions.

First, the node table T is an array as shown in �gure 7. The only problem is that the

size of the array is not known until the full BDD has been constructed. Either a �xed

upper bound could be assumed, or other tricks must be applied (for example dynamic

arrays [CLR90, sec. 18.4]). The table H could be implemented as a hash-table using for

instance the hash function

h(i; v0; v1) = pair(i; pair(v0; v1)) mod m

where pair is a pairing function that maps pairs of natural numbers to natural numbers

and m is a prime. One choice for the pairing function is

pair(i; j) =
(i+ j)(i+ j + 1)

2
+ i

which is a bijection, and therefore \perfect": it produces no collisions. As usual with

hash-tables we have to decide on the size as a prime m. However, since the size of H
grows dynamically it can be hard to �nd a good choice for m. One solution would be to

take m very large, for example m = 15485863 (which is the 1000000'th prime number),

and then take as the hashing function

h0(i; v0; v1) = h(i; v0; v1) mod 2k

using a table of size 2k. Starting from some reasonable small value of k we could increase

the table when it contains 2k elements by adding one to k, construct a new table and

rehash all elements into this new table. (Again, see for example [CLR90, sec. 18.4] for

details.) For such a dynamic hash-table the amortized, expected cost of each operation is

still O(1).
The table G used in Apply could be implemented as a two-dimensional array. How-

ever, it turns out to be very sparsely used { especially if we succeed in getting small

ROBDDs { and it is better to use a hash-table for it. The hashing function used could

be g(v0; v1) = pair(v0; v1) mod m and as for H a dynamic hash-table could be used.

6 Examples of problem solving with ROBDDs

This section will describe various examples of problems that can be solved with an

ROBDD-package. The examples are not chosen to illustrate when ROBDDs are the

best choice, but simply chosen to illustrate the scope of potential applications.

6.1 The 8 Queens problem

A classical chess-board problem is the 8 queens problem: Is it possible to place 8 queens

on a chess board so that no queen can be captured by another queen? To be a bit more
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general we could ask the question for arbitrary N : Is it possible to place N queens safely

on a N �N chess board?

To solve the problem using ROBDDs we must encode it using Boolean variables. We

do this by introducing a variable for each position on the board. We name the variables

as xij; 1 � i; j � N where i is the row and j is the column. A variable will be 1 if a queen

is placed on the corresponding position.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

The capturing rules for queens require that no other queen can be positioned on the

same row, column, or any of the diagonals. This we can express as Boolean expressions:

For all i; j,

xij )
^

1�l�N;l 6=j

:xil

xij )
^

1�k�N;k 6=i

:xkj

xij )
^

1�k�N;1�j+k�i�N;k 6=i

:xk;j+k�i

xij )
^

1�k�N;1�j+i�k�N;k 6=i

:xk;j+i�k

Moreover, there must be a queen in each row: For all i,

xi1 _ xi2 _ � � � _ xiN

Taking the conjunction of all the above requirements, we get a predicate SolN(~x) true at

exactly the con�gurations that are solutions to the N queens problem.

Exercise 6.1 (8 Queens Problem) Write a program that can �nd an ROBDD for

SolN(~x) when given N as input. Make a table of the number of solutions to the N

queens problem for N = 1; 2; 3; 4; 5; 6; 7; 8; : : : When there is a solution, give one.



6 EXAMPLES OF PROBLEM SOLVING WITH ROBDDS 29

_

^

^

xor

xor

x y

co
ci

s

Figure 18: A full-adder

6.2 Correctness of Combinational Circuits

A full-adder takes as arguments two bits x and y and an incoming carry bit ci. It

produces as output a sum bit s and an outgoing carry bit co. The requirement is that

2 � co + s = x+ y+ ci, in other words co is the most signi�cant bit of the sum of x; y, and
ci, and s the least signi�cant bit. The requirement can be written down as a table for co
and a table for s in terms of values of x; y, and ci. From such a table it is easy to write

down a DNF for co and s.

At the normal level of abstraction a combinational circuit is nothing else than a

Boolean expression. It can be represented as an ROBDD, using Build to construct

the trivial ROBDDs for the inputs and using a call to Apply for each gate.

Exercise 6.2 Find DNFs for co and s. Verify that the circuit in �gure 18 implements a

one bit full-adder using the ROBDD-package and the DNFs.

6.3 Equivalence of Combinational Circuits

As above we can construct an ROBDD from a combinational circuit and use the ROBDDs

to show properties. For instance, the equivalence with other circuits.

Exercise 6.3 Verify that the two circuits in �gure 19 are not equivalent using ROBDDs.

Find an input that returns di�erent outputs in the two circuits.
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Figure 19: Two circuits used in exercise 6.3
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Figure 20: Milner's Scheduler with 4 cyclers. The token is passed clockwise from c1 to c2
to c3 to c4 and back to c1

7 Veri�cation with ROBDDs

One of the major uses of ROBDDs is in formal veri�cation. In formal veri�cation a model

of a system M is given together with some properties P supposed to hold for the system.

The task is to determine whether indeedM satisfy P . The approach we take, in which we

shall use an algorithm to answer the satisfaction problem, is often called model checking.

We shall look at a concrete example called Milner's Scheduler (taken from Milner's

book [Mil89]). The model consists of N cyclers, connected in a ring, that co-operates

on starting and detecting termination of N tasks that are not further described. The

scheduler must make sure that the N tasks are always started in order but they are

allowed to terminate in any order. This is one of the properties that has to be shown to

hold for the model. The cyclers try to ful�ll this by passing a token: the holder of the

token is the only process allowed to start its task.

All cyclers are similar except that one of them has the token in the initial state. The

cyclers cyci, 1 � i � N are described in a state-based fashion as small transition systems

over the Boolean variables ti; hi, and ci. The variable ti is 1 when task i is running and 0

when it is terminated; hi is 1 when cycler i has a token, 0 otherwise; ci is 1 when cycler

i � 1 has put down the token and cycler i not yet picked it up. Hence a cycler starts a

task by changing ti from 0 to 1, and detects its termination when ti is again changed back

to 0; and it picks up the token by changing ci from 1 to 0 and puts it down by changing

ci+1 from 0 to 1. The behaviour of cycler i is described by two transitions:

if ci = 1 ^ ti = 0 then ti; ci; hi := 1; 0; 1

if hi = 1 then c(i mod N)+1; hi := 1; 0

The meaning of a transition \if condition then assignment" is that, if the condition is

true in some state, then the system can evolve to a new state performing the (parallel)

assignment. Hence, if the system is in a state where ci is 1 and ti is 0 then we can

simultaneously set ti to 1, ci to 0 and hi to 1.
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The transitions are encoded by a single predicate over the value of the variables before

the transitions (the pre-state) and the values after the transition (the post-state). The

variables in the pre-state are the ti; hi; ci; 1 � i � N which we shall collectively refer to as

~x and in the post-state t0i; h
0
i; c

0
i; 1 � i � N , which we shall refer to as ~x0. Each transition

is an atomic action that excludes any other action. Therefore in the encoding we shall

often have to say that a lot of variables are unchanged. Assume that S is a subset of the

unprimed variables ~x. We shall use a predicate unchangedS over ~x; ~x0 which ensures that

all variables in S are unchanged. It is de�ned as follows:

unchangedS =def

^
x2S

x = x0 :

It is slightly more convenient to use the predicate assignedS0 = unchanged~xnS0 which

express that every variable not in S 0 is unchanged. We can now de�ne Pi, the transitions

of cycler i over the variables ~x; ~x0 as follows:

Pi =def (ci ^ :ti ^ t
0
i ^ :c

0
i ^ h

0
i ^ assignedfci;ti;hig)

_ (hi ^ c0(i mod N)+1 ^ :h
0
i ^ assignedfc(i mod N)+1;hig

)

The signalling of termination of task i, by changing ti from 1 to 0 performed by the

environment is modeled by N transitions Ei; 1 � i � N :

Ei =def ti ^ :t
0
i ^ assignedftig;

expressing the transitions if ti = 1 then ti := 0. Now, at any given state the system can

perform one of the transitions from one of the Pi's or the Ei's, i.e., all possible transitions

are given by the predicate T :

T =def P1 _ � � � _ Pn _ E1 _ � � � _ En :

In the initial state we assume that all tasks are stopped, no cycler has a token and only

place 1 (c1) has a token. Hence the initial state can be characterized by the predicate I
over the unprimed variables ~x given by:

I =def :
~t ^ :~h ^ c1 ^ :c2 ^ � � � ^ :cN :

(Here : applied to a vector ~t means the conjunction of : applied to each coordinate ti.)

The predicates describing Milner's Scheduler are summarized in �gure 21.

Within this setup we could start asking a lot of questions. For example,

1. Can we �nd a predicate R over the unprimed variables characterizing exactly the

states that can be reached from I? R is called the set of reachable states.

2. How many reachable states are there?

3. Is it the case that in all reachable states only one token is present?

4. Is task ti always only started after ti�1?
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unchangedS =def

V
x2S x = x0

assignedS0 =def unchanged~xnS0

Pi =def (ci ^ :ti ^ t
0
i ^ :c

0
i ^ h

0
i ^ assignedci;ti;hi)

_ (hi ^ c0i mod N+1 ^ :h
0
i ^ assignedci mod N+1;hi

)

Ei =def ti ^ :t
0
i ^ assignedti

T =def

_
1�i�N

Pi _ Ei

I =def :
~t ^ :~h ^ c1 ^ :c2 ^ � � � ^ :cN

Figure 21: Milner's Scheduler as described by the transition predicate T and the initial-

state predicate I.

5. Does Milner's Scheduler possess a deadlock? I.e., is there a reachable state in which

no transitions can be taken?

To answer these questions we �rst have to compute R. Intuitively, R must be the set

of states that either satisfy I (are initial) or within a �nite number of T transitions can

be reached from I. This suggest an iterative algorithm for computing R as an increasing

chain of approximations R0; R1; : : : ; Rk; : : : Step k of the algorithm �nd states that with

less than k transitions can be reached from I. Hence, we take R0 = 0 the constantly false

predicate and compute Rk+1 as the disjunction of I and the set of states which from one

transition of T can be reached from Rk. Figure 22 illustrates the computation of R.

How do we compute this with ROBDDs? We start with the ROBDD R = 0 . At any

point in the computation the next approximation is computed by the disjunction of I and
T composed with the previous approximation R0. We are done when the current and the

previous approximations coincide:

Reachable-States(I; T; ~x; ~x0)

1: R 0

2: repeat

3: R0
 R

4: R I _ (9~x: T ^ R)[~x=~x0]

5: until R0 = R
6: return R

7.1 Knights tour

Using the same encoding of a chess board as in section 6.1, letting xij = 1 denote the

presence of a Knight at position (i; j) we can solve other problems. We can encode moves

of a Knight as transitions. For each position, 8 moves are possible if they stay on the

board. A Knight at (i; j) can be moved to any one of (i� 1; j � 2); (i� 2; j� 1) assuming

they are vacant and within the board boundary. For all i; j and k; l with 1 � k; l � N
and (k; l) 2 f(i� 1; j � 2); (i� 2; j � 1)g:

Mij;kl =def xij ^ :xk;l ^ :x
0
ij ^ x

0
kl ^

^
(i0;j0) 62f(i;j);(k;l)g

xi0j0 = x0i0j0 :
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Full state space

I = R
1

R
2

R
3

R

.
.

.

Figure 22: Sketch of computation of the reachable states

Hence, the transitions are given as the predicate T (~x; ~x0):

T (~x; ~x0) =def

_
1�i;j;k;l�N;(k;l)2f(i�1;j�2);(i�2;j�1)g

Mij;kl

Exercise 7.1 (Knight's tour) Write a program to solve the following problem using

the ROBDD-package: Is it possible for a Knight, positioned at the lower left corner to

visit all positions on an N �N board? (Hint: Compute iteratively all the positions that

can be reached by the Knight.) Try it for various N .

Exercise 7.2 Why does the algorithm Reachable-States always terminate?

Exercise 7.3 In this exercise we shall work with Milner's Scheduler for N = 4. It is by

far be the most convenient to solve the exercise by using an implementation of an ROBDD

package.

a) Find the reachable states as an ROBDD R.

b) Find the number of reachable states.

c) Show that in all reachable states at most one token is present on any of the

placeholders c1; : : : ; cN by formulating a suitable property P and prove

that R) P .
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d) Show that in all reachable states Milner's Scheduler can always perform a

transition, i.e., it does not possess a deadlock.

Exercise 7.4 Complete the above exercise by showing that the tasks are always started

in sequence 1; 2; : : : ; N; 1; 2 : : :

Exercise 7.5 Write a program that given an N as input computes the reachable states

of Milner's Scheduler with N cyclers. The program should write out the number of

reachable states (using SatCount). Run the program for N = 2; 4; 6; 8; 10; : : : Measure

the running times and draw a graph showing the measurements as a function of N . What

is the asymptotic running time of your program?

8 Project: An ROBDD Package

This project implements a small package of ROBDD-operations. The full package should

contain the following operations:

Init(n)

Initialize the package. Use n variables numbered 1 through n.

Print(u)
Print a representation of the ROBDD on the standard output. Useful for debugging.

Mk(i; l; h)
Return the number u of a node with var(u) = i; low(u) = l; high(u) = h. This could

be an existing node, or a newly created node. The reducedness of the ROBDD should

not be violated.

Build(t)
Construct an ROBDD from a Boolean expression. You could restrict yourself to the

expressions x or :x or �nite conjunctions of these. (Why?)

Apply(op; u1; u2)

Construct the ROBDD resulting from applying op on u1 and u2.

Restrict(u; j; b)

Restrict the ROBDD u according to the truth assignment [b=xj].

SatCount(u)

Return the number of elements in the set sat(u). (Use a type that can contain very

large numbers such as oating point numbers.)

AnySat(u)
Return a satisfying truth assignment for u

Sub-project 1

Implement the tables T and H with their operations listed in section 4. On top of these

implement the operations Init(n), Print(u), and Mk(i; l; h).
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Sub-project 2

Continue implementation of the package by adding the operations Build(t) and Ap-

ply(op; u1; u2).

Sub-project 3

Finish your implementation of the package by adding Restrict(u; j; b), SatCount(u),

and AnySat(u).

References

[AH97] Henrik Reif Andersen and Henrik Hulgaard. Boolean expression diagrams. In

Proceedings, Twelfth Annual IEEE Symposium on Logic in Computer Science,

pages 88{98, Warsaw, Poland, June 29{July 2 1997. IEEE Computer Society.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, 8(C-35):677{691, 1986.

[Bry92] Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision

diagrams. ACM Computing Surveys, 24(3):293{318, September 1992.

[CBM89] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Veri�cation

of synchronous sequential machines based on symbolic execution. In J. Sifakis,

editor, Automatic Veri�cation Methods for Finite State Systems. Proceedings,

volume 407 of LNCS, pages 365{373. Springer-Verlag, 1989.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. McGraw-Hill, 1990.

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

Third Annual ACM Symposium on the Theory of Computing, pages 151{158,

New York, 1971. Association for Computing Machinery.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.


